Abstract
Randomness extractors are important tools in cryptography. Their goal is to compress a high-entropy source into a more uniform out-put. Beyond their theoretical interest, they have recently gained attention because of their use in the design and proof of leakage-resilient primitives, such as stream ciphers and pseudorandom functions. However, for these proofs of leakage resilience to be meaningful in practice, it is important to instantiate and implement the components they are based on. In this context, while numerous works have investigated the implementation properties of block ciphers such as the AES Rijndael, very little is known about the application of side-channel attacks against extractor implementations. In order to close this gap, this paper instantiates a low-cost hardware extractor and analyzes it both from a performance and from a side-channel security point of view. Our investigations lead to contrasted conclusions. On the one hand, extractors can be efficiently implemented and protected with masking. On the other hand, they provide adversaries with many more exploitable leakage samples than, e.g. block ciphers. As a result, they can ensure high security margins against standard (non-profiled) side-channel attacks and turn out to be much weaker against profiled attacks. From a methodological point of view, our analysis consequently raises the question of which attack strategies should be considered in security evaluations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.