Abstract

The potential of an aqueous two-phase system composed of a polycation, poly(ethyleneimine) (PEI), and an uncharged polymer, (hydroxyethyl) cellulose (HEC), for extractive lactic acid fermentation was tested. Batch fermentation with 20 g/L glucose in two-phase medium using Lactococcus lactis without external pH control resulted in 3-4 times higher amount of lactate and biomass produced as compared to that in a conventional one-phase medium. Lactic acid was preferentially partitioned to the PEI-rich bottom phase. However, the cells which favored the HEC-rich top phase in a fresh two-phase medium were partitioned to a significant extent to the bottom phase after fermentation. Addition of phosphate buffer or pH adjustment to 6.5 after fermentation caused fewer cells to move to the bottom phase. With external pH control, fermentation in normal and two-phase medium showed no marked differences in glucose consumption and lactic acid yield, except that about 1.3 times higher cell density was obtained in the two-phase broth, especially at initial glucose concentrations of 50-100 g/L. Use of higher concentration of phosphate during batch fermentation in the two-phase medium with 50 g/L sugar provided a 15% higher yield of lactic acid, but the growth rate of cells was nearly half of the normal, thus affecting the productivity. Continuous fermentation with twice the normal phosphate concentration resulted in higher cell density, product yield, and productivity in two-phase medium than in monophasic medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.