Abstract

The extractive cultivation of recombinant Escherichia coli cells to produce, release, and separate heat shock proteins (HSPs; GroEL and GroES) using poly(ethylene glycol) (PEG)/dextran (Dex) aqueous two-phase systems was developed. The growth rate of E. coli OW10/pND5 cells in the PEG/Dex two-phase media was almost the same value as that in the control media. The addition of 0.1 M potassium phosphate salts (KPi) increased the productivity of HSPs with keeping the growth rate of E. coli cells relatively high. The partition coefficients of HSPs were improved to greater values when phosphate salts were added at a concentration of more than 0.1 M. As a result, PEG/Dex systems supplemented with 0.1 M KPi were found to be the optimized two-phase systems for the extractive cultivation of E. coli cells. In the systems, the HSPs were selectively partitioned to the top phase while cells occupied the bottom phase and the interface between the two phases. This integrated process was extended to a semicontinuous operating mode, where the top phase containing the HSPs was recovered following intermittent heating and ultrasonic irradiation. The bottom phase containing cells and cell debris was recycled together with new top phase solution to repeat production and recovery of HSPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.