Abstract

A feature fusion approach is presented to extract the region of interest (ROI) from the stereoscopic video. [0]Based on human vision system (HVS), the depth feature, the color feature and the motion feature are chosen as vision features. [0]The algorithm is shown as follows. Firstly, color saliency is calculated on superpixel scale. Color space distribution of the superpixel and the color difference between the superpixel and background pixel are used to describe color saliency and color salient region is detected. Then, the classic visual background extractor (Vibe) algorithm is improved from the update interval and update region of background model. The update interval is adjusted according to the image content. The update region is determined through non-obvious movement region and background point detection. So the motion region of stereoscopic video is extracted using improved Vibe algorithm. The depth salient region is detected by selecting the region with the highest gray value. Finally, three regions are fused into final ROI. Experiment results show that the proposed method can extract ROI from stereoscopic video effectively. In order to further verify the proposed method, stereoscopic video coding application is also carried out on the joint model (JM) encoder with different bit allocation in ROI and the background region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.