Abstract

The conduction band minimum energy in amorphous oxide semiconductor-based thin film transistors (AOS TFTs) is a key parameter governing the accurate extraction of energy distribution for the subgap density-of-states (DOSs) and carrier mobility. We report a technique for extraction of the gate voltage ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {CBM}}{)}$ </tex-math></inline-formula> and corresponding energy ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${E}_{\text {F},{\text {CBM}}}$ </tex-math></inline-formula> = <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${E}_{\text {C}-{\text {EREF}}}{)}$ </tex-math></inline-formula> for the quasi-Fermi level ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${E}_{\text {F}}{)}$ </tex-math></inline-formula> equal to the conduction band minimum ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${E}_{\text {C}}{)}$ </tex-math></inline-formula> as <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {CBM}}$ </tex-math></inline-formula> = <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {GS}}$ </tex-math></inline-formula> ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${E}_{\text {F}}$ </tex-math></inline-formula> = <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${E}_{\text {C}}{)}$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${E}_{\text {F},{\text {CBM}}}$ </tex-math></inline-formula> = <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${E}_{\text {F}}$ </tex-math></inline-formula> ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {GS}}$ </tex-math></inline-formula> = <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {CBM}}{)}$ </tex-math></inline-formula> . In order to confirm this technique through optoelectronic experimental data, amorphous indium–gallium–zinc–oxide (a-IGZO)-based thin film transistor was irradiated with various wavelengths and power, and obtained <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {CBM}}$ </tex-math></inline-formula> = 7.1 V and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${E}_{\text {F} {\text {CBM}}}$ </tex-math></inline-formula> = 71 meV in the dark state. This technique is expected to be useful in the accurate characterization of the subgap DOS and the effective mobility in AOS TFTs through a simple and effective extraction process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call