Abstract

The extraction rates of amino acids from alkaline aqueous solution into an emulsion liquid membrane containing tri-n-octylmethylammonium chloride as a carrier and Paranox 100 as an emulsifier were measured using a stirred transfer cell. The effects of agitation speed (0·33–0·66 rev s−1), amino acid concentrations (0·5–50 mol m−3) and temperature (10–45°C) on the extraction rates were examined. The results were analyzed by a double-film model. The mass transfer coefficients of amino acids (0·26–1·58×10−5 m s−1) and their complexes (0·60–1·72×10−5 m s−1) were found to correlate well with the hydrophobicities of the amino acids. It was found that the surfactant layer influenced the mass transfer processes of both amino acids in the aqueous film and their complexes in the organic film. The permeation of amino acids with a large hydrophobicity through the emulsion liquid membrane was promoted by both high distribution and larger mass transfer rates. © 1998 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.