Abstract

Metabolomics and in particular, nontargeted metabolomics, has become a popular technique for the study of biological samples as it provides considerable amounts of information on extractable metabolites and is ideal for studying the metabolic response of an organism to stressors in its environment. One such organism, the symbiotic hard coral, presents its own complexity when considering a metabolomics approach in that it forms intricate associations with an array of symbiotic macro- and microbiota. While not discounting the importance of these many associations to the function of the coral holobiont, the coral-Symbiodinium relationship has been the most studied to date and as such, is the primary focus of this extraction protocol. This protocol provides details for the sample collection, extraction, and measurement of hard coral holobiont metabolites using both (1)H nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography coupled with mass spectrometry (LC-MS). Using this nontargeted metabolomics approach, the holobiont metabolism can be investigated for perturbations resulting from either (1) natural or anthropogenic environmental challenges, (2) the controlled application of stressors, and (3) differences between phenotypes or species. Consequently, this protocol will benefit both environmental and natural products based research of hard coral and their algal symbionts. Every effort has been made to provide the reader with all the details required to perform this protocol, including many of the costly and time consuming "pitfalls" or "traps" that were discovered during its development. As a result, this protocol can be confidently accomplished by those with less experience in the extraction and analysis of symbiotic hard coral, requiring minimal user input whilst ensuring reproducible and reliable results using readily available lab ware and reagents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.