Abstract

An efficient and reusable adsorbent, namely 3-mercaptopropionic acid modified tetraethyl orthosilicate (TEOS) grafted MnFe2O4 nanoparticles (MPA-TEOS-MnFe2O4 NPs) was synthesized and used for the extraction and preconcentration of trace amount of Al (III) and Cr (III) ions in water samples. MnFe2O4 NPs were prepared by chemical co-precipitation of manganese (II) and iron (III) salts in alkaline medium and then, modified by TEOS to create an inert layer preventing nanoparticle agglomeration. The TEOS-MnFe2O4 NPs were then modified with MPA to produce an adsorbent with carboxylic acid functional groups which have tendency to hard metal ions such as Al(III) and Cr (III). The prepared adsorbent was characterized by SEM, XRD, VSM and FT-IR techniques. The Al (III) and Cr(III) ions were measured by graphite furnace and flame atomic absorption spectrometric techniques, respectively. Various factors affecting extraction/desorption efficiency of target ions were investigated and analytical characteristics of the method were determined and detection limits of 0.5 and 0.2 ng mL-1 with preconcentration factor of 69 and 72 were obtained for Al (III) and Cr(III) ions, respectively. The results revealed that the adsorbent has high capacity and good reusability for extraction/preconcentration of target metal ions in tap and drinking water samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.