Abstract
In this study, the Chinese yam peel polysaccharide (CYPP) was obtained under the extraction conditions optimized by the Response Surface Methodology (RSM). Further biological properties of CYPP-1 purified from CYPP were also determined. The results indicated that the optimum extraction conditions were an extraction temperature of 90.5°C, a liquid-solid ratio of 28.0ml/g, and an extraction time of 2.94 h, along with a yield of 8.81 ± 1.48%. CYPP-1 was identified as a kind of heteropolysaccharide mostly composed of glucose and galactose (59.4:1.0). The molecular weights were two main parts of 50.5kDa (54.77%) and 4.4kDa (21.02%), and the triple-helix conformation was not formed in CYPP-1. Besides, CYPP-1 showed good biological properties including in vitro antioxidant activity and immunomodulatory function on RAW264.7 cells, as well as favorable hypoglycemic effect. Overall, the high-value utilization of CYPP-1 reveals a broad application prospect in the industrial production of functional foods and pharmaceuticals. PRACTICAL APPLICATIONS: Yam peel, which is discarded in large quantities during postharvest processing, results in the production of tremendous by-products and is a great waste of resources. In this study, the yield of water-soluble polysaccharide from yam peel reached 8.81 ± 1.48%. Besides, the purified CYPP-1 exhibited excellent antioxidant activity, favorable immunomodulatory function, and hypoglycemic effect. The high productivity and bioactive effects are both great merits for Chinese yam peel polysaccharide as a promising candidate for foods and medicines industrial production.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.