Abstract

The spreading factor is considered as a key parameter that controls the concentration of the directional distribution of the wave energy. It has been confirmed by many scholars that there is a certain relationship between spreading factor and sea surface wind. In the application of high frequency surface wave radar (HFSWR), spreading factor is extracted from the ratio ( $R_{B}$ ) of power spectrum density (PSD) of positive ( $P^{+}_{B}$ ) and negative ( $P^{-}_{B}$ ) Bragg peaks. To extract accurate spreading factor, the premise is that the PSD of detection unit is as little as possible affected by the adjacent detection units. For narrow-beam radar, digital beamforming (DBF) is easy to meet requirements. But for broad-beam radar, it is very difficult. In this paper, a new scheme is proposed to extract spreading factor from broad-beam HFSWR data with the MUSIC-APES algorithm. Different from spatial filtering by DBF, MUSIC-APES directly estimates the azimuth of positive or negative Bragg waves and their echo amplitudes. For broad-beam radar, this scheme can still achieve high azimuth resolution and accurate amplitude estimation at the same time. It solves the biggest obstacle to extract the spreading factor from broad-beam HFSWR data. To verify the feasibility of this scheme, simulations and experiments are carried out to compare with DBF. The extraction accuracy is improved greatly. The results are very surprising. It shows that spreading factor and wind speed are highly relevant. This may be a new way to extract wind speed in the application of HFSWR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call