Abstract
The precise delineation of urban aquatic features is of paramount importance in scrutinizing water resources, monitoring floods, and devising water management strategies. Addressing the challenge of indistinct boundaries and the erroneous classification of shadowed regions as water in high-resolution remote sensing imagery, we introduce WaterDeep, which is a novel deep learning framework inspired by the DeepLabV3 + architecture and an innovative fusion mechanism for high- and low-level features. This methodology first creates a comprehensive dataset of high-resolution remote sensing images, then progresses through the Xception baseline network for low-level feature extraction, and harnesses densely connected Atrous Spatial Pyramid Pooling (ASPP) modules to assimilate multi-scale data into sophisticated high-level features. Subsequently, the network decoder amalgamates the elemental and intricate features and applies dual-line interpolation to the amalgamated dataset to extract aqueous formations from the remote images. Experimental evidence substantiates that WaterDeep outperforms its existing deep learning counterparts, achieving a stellar overall accuracy of 99.284%, FWIoU of 95.58%, precision of 97.562%, recall of 95.486%, and F1 score of 96.513%. It also excels in the precise demarcation of edges and the discernment of shadows cast by urban infrastructure. The superior efficacy of the proposed method in differentiating water bodies in complex urban environments has significant practical applications in real-world contexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.