Abstract

With the alarming rate of e-waste generation, resource recovery from secondary metal sources is essential for sustainable resource utilization and to prevent the release of potentially toxic elements into the environment. In the current study, the first-time extraction of Ag, Mo, and Cu from active-matrix organic light-emitting diode (AMOLED) screens of discarded smartphones have been achieved using organic acids produced by Bacillus foraminis cultured on a modified Horikoshi medium. The influences of initial pH, inoculation size, and pulp density on the bioleaching process were evaluated over six-day experiment. Maximum extraction of Ag, Mo, and Cu (100, 56.8, and 41.4%) at optimal values of three investigated factors was obtained over a 12-day bioleaching experiment. A diverse assemblage of organic acid was produced in the optimized bioleaching condition, including tartaric (12.1mM), formic (49.8mM), acetic (21.5mM), lactic (78.5mM), citric (2.7mM), and propionic (69.6mM) acid. The contact angle analysis highlighted more hydrophobicity of powder after the bioleaching. FTIR and CHNO data also confirmed the role of bioleaching in the powder wettability alteration. The sequential extraction method revealed high mobility of In, Fe, Co, Cu, Cr, and Mo and low mobility of Ag. The results exhibited high tolerance of alkali-tolerant bacteria to potentially toxic elements and its superior performance in the bioleaching of discarded mobile screens at high pulp density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call