Abstract

This letter describes a technique of extracting and estimating the underwater laver cultivation nets by using the entropy analysis of polarimetric synthetic aperture radar (PolSAR) data. The cultivation nets are placed at 10-20 cm below the sea surface, so that the Bragg waves responsible for L-band radar backscatter do not fully develop in this area of effectively shallow water. Consequently, the surface becomes smooth, and the backscatter radar cross section (RCS) becomes small in comparison with that from deep water without cultivation nets. If RCS from the cultivation area is at the system noise level, the image can be considered as arising from a random process, and the polarimetric entropy should be higher than the open sea area where the radar backscatter is dominated by the single-bounce surface scattering process. We will show that, using the data acquired by Phased Array L-band SAR onboard the Advanced Land Observing Satellite over the Tokyo Bay, Japan, the polarimetric entropy is an effective means of extracting underwater cultivation areas in comparison with the amplitude images. The area of the laver cultivation is then estimated by applying a constant false alarm rate to the entropy images to yield good agreement with the ground-truth data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.