Abstract

Background: Measurements of the neutron charge form factor, GEn, are challenging because the neutron has no net charge. In addition, measurements of the neutron form factors must use nuclear targets which require accurately accounting for nuclear effects. Extracting GEn with different targets and techniques provides an important test of our handling of these effects. Purpose: The goal of the measurement was to use an inclusive asymmetry measurement technique to extract the neutron charge form factor at a four-momentum transfer of 1(GeV/c)2. This technique has very different systematic uncertainties than traditional exclusive measurements and thus serves as an independent check of whether nuclear effects have been taken into account correctly. Method: The inclusive quasielastic reaction 3He⃗(e⃗,e′) was measured at Jefferson Laboratory. The neutron electric form factor, GEn, was extracted at Q2=0.98(GeV/c)2 from ratios of electron-polarization asymmetries measured for two orthogonal target spin orientations. This Q2 is high enough that the sensitivity to GEn is not overwhelmed by the neutron magnetic contribution, and yet low enough that explicit neutron detection is not required to suppress pion production. Results: The neutron electric form factor, GEn, was determined to be 0.0414±0.0077(stat)±0.0022(syst), providing the first high-precision inclusive extraction of the neutron's charge form factor. Conclusions: The use of the inclusive quasielastic 3He⃗(e⃗,e′) with a four-momentum transfer near 1(GeV/c)2 has been used to provide a unique measurement of GEn. This new result provides a systematically independent validation of the exclusive extraction technique results and implies that the nuclear corrections are understood. This is contrary to the proton form factor where asymmetry and differential cross section measurements have been shown to have large systematic differences.Received 24 June 2017DOI:https://doi.org/10.1103/PhysRevC.96.065206©2017 American Physical SocietyPhysics Subject Headings (PhySH)Research AreasPhotonuclear reactionsPhysical SystemsNeutronsPropertiesForm factorsNuclear PhysicsParticles & Fields

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.