Abstract

The quantized Hall conductivity of integer and fractional quantum Hall (IQH and FQH) states is directly related to a topological invariant, the many-body Chern number. The conventional calculation of this invariant in interacting systems requires a family of many-body wave functions parameterized by twist angles in order to calculate the Berry curvature. In this paper, we demonstrate how to extract the Chern number given a single many-body wave function, without knowledge of the Hamiltonian. For FQH states, our method requires one additional integer invariant as input: the number of $2\pi$ flux quanta, $s$, that must be inserted to obtain a topologically trivial excitation. As we discuss, $s$ can be obtained in principle from the degenerate set of ground state wave functions on the torus, without knowledge of the Hamiltonian. We perform extensive numerical simulations involving IQH and FQH states to validate these methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.