Abstract

Previous studies of the halide complex formation of element 105 in HCl/HF mixtures and extractions into triisooctyl amine (TIOA) had been performed with the Automated Rapid Chemistry Apparatus, ARCA II. Element 105 was shown to be sorbed on the column from 12 M HCl/0.02 M HF together with its lighter homologues Nb, Ta and the pseudohomologue Pa. In elutions with 10 M HCl/0.025 M HF, 4 M HCl/0.02 M HF, and 0.5 M HCl/0.01 M HF, the extraction sequence Ta>Nb>105>Pa was observed and element 105 behaved very differently from its closest homologue Ta. As it is not possible within reasonable effort to model the many presumably mixed fluoride-chloride complexes involved in these studies, theoretical calculations were performed in the pure chloride system predicting a reversed sequence of extraction. To verify this experimentally, and in order to perform a systematic study of halide complexation of the group 5 elements, new batch extraction experiments for Nb, Ta, and Pa were performed with the quaternary ammonium salt Aliquat 336 in pure HF, HCl, and HBr solutions. Based on these results, new chromatographic column separations were elaborated to study separately the fluoride and chloride complexation of element 105 with ARCA II. In the system Aliquat 336/HF, after feeding of the activity onto the column in 0.5 M HF, element 105 did not elute in 4 M HF (Pa fraction) but showed a higher distribution coefficient close to that of Nb (and Ta). In the system Aliquat 336/HCl, after feeding onto the column in 10 M HCl, element 105 showed a distribution coefficient in 6 M HCl close to that of Nb establishing an extraction sequence Pa>Nb≥105>Ta which is theoretically predicted by considering the competition between hydrolysis and complex formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.