Abstract
To extract the sensitive bands for estimating the winter wheat growth status and yields, field experiments were conducted. The crop variables including aboveground biomass (AGB), soil and plant analyzer development (SPAD) value, yield, and canopy spectra were determined. Statistical methods of correlation analysis, partial least squares (PLS), and stepwise multiple linear regression (SMLR) were used to extract sensitive bands and estimate the crop variables with calibration set. The predictive model based on the selected bands was tested with validation set. The results showed that the crop variables were significantly correlated with spectral reflectance. The major spectral regions were selected with the B-coefficient and variable importance on projection (VIP) parameter derived from the PLS analysis. The calibrated SMLR model based on the selected wavelengths demonstrated an excellent performance as the R2, TC, and RMSE were 0.634, 0.055, and 843.392 for yield; 0.671, 0.017, and 1.798 for SPAD; and 0.760, 0.081, and 1.164 for AGB. These models also performed accurately and robustly by using the field validation data set. It indicated that these wavelengths retained in models were important. The determined wavelengths for yield, SPAD, and AGB were 350, 410, 730, 1015, 1185 and 1245 nm; 355, 400, 515, 705, 935, 1090, and 1365 nm; and 470, 570, 895, 1170, 1285, and 1355 nm, respectively. This study illustrated that it was feasible to predict the crop variables by using the multivariate method. The step-by-step procedure to select the significant bands and optimize the prediction model of crop variables may serve as a valuable approach. The findings of this study may provide a theoretical and practical reference for rapidly and accurately monitoring the crop growth status and predicting the yield of winter wheat.
Highlights
The traditional method for obtaining the physiological and biochemical parameters of crops is mainly based on taking physical samples from the fields, and measuring them by using chemical methods in the lab
To accurately extract the important wavelengths that are sensitive to the grain yield, soil and plant analyzer development (SPAD), and aboveground biomass (AGB), the experiment 1 and 2 were merged into the calibration set (Table 1)
The experiment 3 would confirm the accuracy of selected sensitive bands through validating the application and robustness of stepwise multiple linear regression (SMLR) models for crop variables
Summary
The traditional method for obtaining the physiological and biochemical parameters of crops is mainly based on taking physical samples from the fields, and measuring them by using chemical methods in the lab. Extraction of Sensitive Bands for Monitoring the Winter Wheat had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.