Abstract

Solar energy is an abundant, clean, and renewable source that can mitigate global climate change, environmental pollution, and energy shortage. However, comprehensive datasets and efficient identification models for the spatial distribution of photovoltaic (PV) plants locally and globally over time remain limited. In the present study, a model that combines original spectral features, PV extraction indexes, and terrain features for the identification of PV plants is established based on the pilot energy city Golmud in China, which covers 71,298.7 km2 and has the highest density of PV plants in the world. High-performance machine learning algorithms were integrated with PV plant extraction models, and performances of the XGBoost, random forest (RF), and support vector machine (SVM) algorithms were compared. According to results from the investigations, the XGBoost produced the highest accuracy (OA = 99.65%, F1score = 0.9631) using Landsat 8 OLI imagery. The total area occupied by PV plants in Golmud City in 2020 was 10,715.85 ha based on the optimum model. The model also revealed that the area covered by the PV plant park in the east of Golmud City increased by approximately 10% from 2018 (5344.2 ha) to 2020 (5879.34 ha). The proposed approach in this study is one of the first attempts to identify time-series large-scale PV plants based on a pixel-based machine learning algorithm with medium-resolution free images in an efficient way. The study also confirmed the effectiveness of combining original spectral features, PV extraction indexes, and terrain features for the identification of PV plants. It will shed light on larger- and longer-scale identification of PV plants around the world and the evaluation of the associated dynamics of PV plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call