Abstract

We present a cortical-based model for computing the perceptual salience of contours embedded in noisy images. It has been suggested that horizontal intra-cortical connections in primary visual cortex may modulate contrast detection thresholds and pre-attentive "pop-out". In our model, horizontal connections mediate context-dependent facilitatory and inhibitory interactions among oriented cells. Strongly facilitated cells undergo temporal synchronization; and perceptual salience is determined by the level of synchronized activity. The model accounts for a range of reported psychophysical and physiological effects of contour salience. In particular, the model proposes that intrinsic properties of synchronization account for the increased salience of smooth, closed contours. Application of the model to real images is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call