Abstract
It is important for aquaculture monitoring, scientific planning, and management to extract offshore aquaculture areas from medium-resolution remote sensing images. However, in medium-resolution images, the spectral characteristics of offshore aquaculture areas are complex, and the offshore land and seawater seriously interfere with the extraction of offshore aquaculture areas. On the other hand, in medium-resolution images, due to the relatively low image resolution, the boundaries between breeding areas are relatively fuzzy and are more likely to ‘adhere’ to each other. An improved U-Net model, including, in particular, an atrous spatial pyramid pooling (ASPP) structure and an up-sampling structure, is proposed for offshore aquaculture area extraction in this paper. The improved ASPP structure and up-sampling structure can better mine semantic information and location information, overcome the interference of other information in the image, and reduce ‘adhesion’. Based on the northeast coast of Fujian Province Sentinel-2 Multispectral Scan Imaging (MSI) image data, the offshore aquaculture area extraction was studied. Based on the improved U-Net model, the F1 score and Mean Intersection over Union (MIoU) of the classification results were 83.75% and 73.75%, respectively. The results show that, compared with several common classification methods, the improved U-Net model has a better performance. This also shows that the improved U-Net model can significantly overcome the interference of irrelevant information, identify aquaculture areas, and significantly reduce edge adhesion of aquaculture areas.
Highlights
Key Laboratory of Spatial Data Mining & Information Sharing of Ministry of Education, National Engineering Research Centre of Geospatial Information Technology, Academy of Digital
U-Net model is mainly composed of three parts.parts
After that, themap feature was input into the decoder by the connection layer, and ac- to the the feature wasmap input into the decoder by the connection layer, and according cording tomaps the feature maps oflevels, different levels, it was gradually to the input feature of different it was gradually restoredrestored to the input imageimage size
Summary
Key Laboratory of Spatial Data Mining & Information Sharing of Ministry of Education, National Engineering Research Centre of Geospatial Information Technology, Academy of Digital. Structure and an up-sampling structure, is proposed for offshore aquaculture area extraction in this paper. The improved ASPP structure and up-sampling structure can better mine semantic information and location information, overcome the interference of other information in the image, and reduce ‘adhesion’. Scan Imaging (MSI) image data, the offshore aquaculture area extraction was studied. Based on the improved U-Net model, the F1 score and Mean Intersection over Union (MIoU) of the classification results were 83.75% and 73.75%, respectively. The results show that, compared with several common classification methods, the improved U-Net model has a better performance. This shows that the improved U-Net model can significantly overcome the interference of irrelevant information, identify aquaculture areas, and significantly reduce edge adhesion of aquaculture areas
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.