Abstract

A magnetite@graphene oxide nanocomposite was first coated with polyethylenimine and then modified with phytic acid and titanium(IV) ions. The high loading with Ti(IV) and the good hydrophilicity of PEI and PA result in a material that can be applied to the efficient extraction of highly polar nucleobases, nucleosides and nucleotides. The physicochemical properties of the composite were investigated by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, water contact angle measurements, thermogravimetric analysis, and vibrating sample magnetometry. A series of parameters that affect extraction and elution under the conditions of immobilized metal affinity chromatography (IMAC) and hydrophilic interaction liquid chromatography (HILIC) were examined. The analytes were eluted from the nanocomposites using 10mM trisodium phosphate as theelution solution in theIMAC mode, and 50% methanol-water as elution solution in theHILIC mode. Figures of merit include (a) an intra-day precision of 0.1-1.0% in the IMAC mode; (b) an intra-day precision of 0.4%-0.8% in the HILIC mode; (c) detection limits between 1.8-2.8ng mL-1 in the IMAC mode; and (d) detection limits of 4.0-10.5ng mL-1 in the HILIC mode. The method was applied to the extraction of the nucleotides cytidine-5'-monophosphate (CMP), uridine-5'-monophosphate (UMP), guanosine-5'-monophosphate (GMP), and adenosine-5'-monophosphate (AMP), and the nucleobases and nucleosides hypoxanthine, adenosine, cytosine, inosine and cytidine from Cordyceps sinensis, Lentinus edodes and plasma samples. Graphical abstract Schematic presentation of theworkflow for the extraction of nucleobases, nucleosides and nucleotides using phytic acid-Ti(IV) functionalized magnetite@graphene oxide nanocomposites under two distinct modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.