Abstract
The extraction of k-mers from reads is an important task in many bioinformatics applications, such as all DNA sequence analysis methods based on de Bruijn graphs. These methods tend to be more accurate when the used k-mers are unique in the analyzed DNA, and thus the use of longer k-mers is preferred. When the read lengths of short read sequencing technologies increase, the error rate will become the determining factor for the largest possible value of k. Here we propose LoMeX which uses spaced seeds to extract long k-mers accurately even in the presence of sequencing errors. Our experiments show that LoMeX can extract long k-mers from current Illumina reads with a similar or higher recall than a standard k-mer counting tool. Furthermore, our experiments on simulated data show that when the read length further increases enabling even longer k-mers, the performance of standard k-mer counters declines, whereas LoMeX still extracts long k-mers successfully.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.