Abstract
A crucial step in understanding the architecture of cells and tissues from microscopy images, and consequently explain important biological events such as wound healing and cancer metastases, is the complete extraction and enumeration of individual filaments from the cellular cytoskeletal network. Current efforts at quantitative estimation of filament length distribution, architecture and orientation from microscopy images are predominantly limited to visual estimation and indirect experimental inference. Here we demonstrate the application of a new algorithm to reliably estimate centerlines of biological filament bundles and extract individual filaments from the centerlines by systematically disambiguating filament intersections. We utilize a filament enhancement step followed by reverse diffusion based filament localization and an integer programming based set combination to systematically extract accurate filaments automatically from microscopy images. Experiments on simulated and real confocal microscope images of flat cells (2D images) show efficacy of the new method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.