Abstract

Abstract. West Antarctica is the main contributor to global sea level rise at present and in the coming decades, since it occupies 80% of mass loss in Antarctica. In this paper, a combination of Differential Interferometric Synthetic Aperture Radar (DInSAR) and offset tracking technology is used to extract the ice flow velocity of the Pine Island Glacier (PIG), a typical glacier in West Antarctica. Due to the large deformation gradients in PIG, DInSAR technology is used to extract ice flow velocity in bare rock and mountains, then offset tracking technology is used to extract ice flow velocity in areas where glaciers collapse frequently. Finally, the above two results are mosaiced into a new image of the interannual ice flow velocity of PIG in 2017. Through qualitative and quantitative evaluation, it is found that the ice flow velocity extracted by the combination has high accuracy in both high and low velocity areas. In summary, we concluded that the combination of DInSAR and Offset tracking can obtain reliable ice velocity products in glaciers that change rapidly. This combination is of scientific significance for monitoring the movement and evolution of glaciers in the West Antarctica.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.