Abstract
The human visual system appears to be capable of temporally integrating information in a video sequence in such a way that the perceived spatial resolution of a sequence appears much higher than the spatial resolution of an individual frame. While the mechanisms in the human visual system that do this are unknown, the effect is not too surprising given that temporally adjacent frames in a video sequence contain slightly different, but unique, information. This paper addresses the use of both the spatial and temporal information present in a short image sequence to create a single high-resolution video frame. A novel observation model based on motion compensated subsampling is proposed for a video sequence. Since the reconstruction problem is ill-posed, Bayesian restoration with a discontinuity-preserving prior image model is used to extract a high-resolution video still given a short low-resolution sequence. Estimates computed from a low-resolution image sequence containing a subpixel camera pan show dramatic visual and quantitative improvements over bilinear, cubic B-spline, and Bayesian single frame interpolations. Visual and quantitative improvements are also shown for an image sequence containing objects moving with independent trajectories. Finally, the video frame extraction algorithm is used for the motion-compensated scan conversion of interlaced video data, with a visual comparison to the resolution enhancement obtained from progressively scanned frames.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.