Abstract

The abnormal functionality of mitochondria has been linked to many life-threatening diseases such as cancers, failure of cardiovascular functions, and neurodegenerative disorders. Therefore, in vitro analysis of mitochondria has garnered great interest for understanding the mechanism of mitochondrial dysfunction-related disease development and therapeutics. However, due to the intrinsic heterogeneity of cell membrane stiffness, it remains challenging to standardize the protocols for the extraction of mitochondria and adequate disruption of the cellular membrane while retaining the functionality of mitochondria. We have previously developed a microfluidics-based cell shredder capable of serving the purpose. In this protocol, we describe the step-by-step procedures to empirically identify the threshold shear stress using this microfluidics-based cell shredder for mitochondrial extraction. The optimal shear stress to disrupt human embryonic kidney cell (HEK 293) and mice muscle cell (C2C12) has been characterized at around 16.4Pa, whereas cell lines with stiffer membrane stiffness, for example, neuroblastoma cells (SH-SY5Y), require 27.4Pa to effectively lyse the cells. This protocol also provides detailed procedures to determine the quality of extracted mitochondria based on the membrane potential and the integrity of extracted mitochondria. A comparison with the widely employed Dounce homogenizer has shown that the proposed microscale cell shredder can yield at least 40% more functional mitochondria and retain higher integrity regarding extracted mitochondria than the counterparts extracted from Dounce homogenizer, especially for low cell concentrations (5-20×104cells/mL) and small sample volume (<200μL).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.