Abstract

Conductive mineral nanoparticles, such as magnetite, can promote interspecies electron transfer between syntrophic partners. However, the effect of magnetite has only been inferred in intraspecific electron output. Herein, a hydrogen-producing strain, namely, Clostridium bifermentans , which holds several electron output pathways, was used to study the effect of magnetite on the intraspecific electron output manner. Additionally, insulated amorphous ferrihydrite, which was used as an extracellular electron acceptor, was selected to compare with magnetite. Electrons, which were originally used to generate hydrogen, were shunted with the addition of magnetite and ferrihydrite, which resulted in the reduction of hydrogen production and accumulation of Fe(II). Interestingly, more electrons (39.7% and 53.5%) were extracted by magnetite and ferrihydrite, respectively, which led to less production of butyrate and more acetate. More importantly, the increased electron extraction efficiency suggested that electroactive microorganisms can switch metabolic pathways to adapt to electron budget pressure in intraspecific systems. This work broadens the understanding of the interaction between iron oxides and fermentative hydrogen-producing microbes that hold the capacity of Fe(III) reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call