Abstract
The paper deals with a mechanical system consisting of a hinged rectangular plate and an additional viscoelastic support with considering its mass-inertia. The impact of the characteristics of additional support on the plate strained state is studied by an original approach of extracting elastic, viscous and inertial components from the total reaction. The plate is assumed to be medium thickness, elastic and isotropic. The Timoshenko hypothesis is used for deformation equations. The external non-stationary force initiates plate vibrations. The impact of the additional support is replaced by the action of three unknown independent non-stationary concentrated forces. The basic formulas for deriving system of three Volterra integral equations are proposed. The system is then solved by numerical and analytical method. By discretizing in time the system of Volterra integral equations is reduced to a system of matrix equations. The system of matrix equations is solved with using generalized Kramer’s algorithm for block matrices and Tikhonov’s regularization method. Note that the approach proposed is applicable for other objects with additional supports, such as beams, plates and shells having various boundary contour and boundary supporting. The results of computing elastic, viscous and inertial components of total reactions on the plate are given. The approach proposed is verified by matching the results of computations by two different methods, namely numerical and analytical for one total reaction and numerical for the total reaction obtained by adding elastic, viscous and inertial components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the National Technical University "KhPI". Series: Mathematical modeling in engineering and technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.