Abstract

It has been proved a lot of linear feature extraction methods can be generalized to the nonlinear learning methods by using kernel methods. In this paper, a new nonlinear learning method of optimal transformation and cluster centers (OT-CC) is presented by using kernel technique. It is named as optimal transformation and cluster centers algorithm of kernel space (KOT-CC), which is a powerful technique for extracting nonlinear discriminant features and is very effective in solving pattern recognition problems where the overlap between patterns is serious. A large number of experiments demonstrate the new algorithm outperforms OT-CC and kernel fisher discriminant analysis (KFDA).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.