Abstract
Diffraction images can be used for modeling reservoir heterogeneities at or below the seismic wavelength scale. However, the extraction of diffractions is challenging because their amplitude is weaker than that of overlapping reflections. Recently, deep-learning (DL) approaches have been used as a powerful tool for diffraction extraction. Most DL approaches use a classification algorithm that classifies pixels in the seismic data as diffraction, reflection, noise, or diffraction with reflection and takes whole values for the classified diffraction pixels. Thus, these DL methods cannot extract diffraction energy from pixels for which diffractions are masked by reflections. We have developed a DL-based diffraction extraction method that preserves the amplitude and phase characteristics of diffractions. Through the systematic generation of a training data set using synthetic modeling based on t-distributed stochastic neighbor embedding analysis, this technique extracts not only faint diffractions but also diffraction tails overlapped by strong reflection events. We also determine that the DL model pretrained with a basic synthetic data set can be applied to seismic field data through transfer learning. Because the diffractions extracted by our method preserve the amplitude and phase, they can be used for velocity model building and high-resolution diffraction imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.