Abstract

The design of new biotechnology depends on the prediction and measurement of the electrical properties of biomolecules. The dielectric permittivity, in particular, is highly important for the design of microwave systems for diagnostics, yet this property is rarely explicitly targeted during the development of biomolecular force fields for molecular dynamics (MD) simulations. In order to explore the ability of existing force fields to reproduce the frequency-dependent permittivity, we carried out MD simulations of various aqueous solutions, including pure water, isopropyl alcohol, alanine, and the protein ubiquitin. The TIP3P, TIP4P, TIP4P/ε, and SWM4-NDP water models were used along with the CHARMM36m and Drude protein force fields. An experimental setup using a truncated coaxial line was created to measure the permittivity of the same solutions to check for measure-model agreement. We found that one of the nonpolarizable force fields (TIP4P/ε + CHARMM36m) and the polarizable force fields (SWM4-NDP + Drude) closely agree with experimental results. This demonstrates the strength of the tuned TIP4P/ε water model, as well as the physical validity of polarizable force fields in capturing dielectric permittivity. This represents an important step toward the predictive design of biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.