Abstract

The extraction of curcuminoids and aromatic (ar)-turmerone from Curcuma longa L. using organic solvents produces chemical waste, and is therefore incompatible with food applications. To address this issue, this study presents the design of hydrophobic deep eutectic solvents (HDESs) and HDES-based microemulsions. Using the response surface methodology (RSM), the optimal extraction conditions were identified as follows: HDES = OA:menthol (1:3.6 M ratio), solid-to-liquid ratio = 10:1 (mg/mL), and extraction duration = 90 min (prediction accuracy ≥ 85 %). Under these conditions, the HDES extraction yields of bisdemethoxycurcumin, demethoxycurcumin, curcumin, and ar-turmerone were 2.49 ± 0.25, 5.61 ± 0.45, 9.40 ± 0.86, and 3.83 ± 0.19 % (w/w, dry basis), respectively, while those obtained using the HDES-based microemulsion were 2.10 ± 0.18, 6.31 ± 0.48, 12.6 ± 1.20, and 2.58 ± 0.19 % (w/w, dry basis), respectively. The HDES and its microemulsions are more effective and environmentally friendly than conventional organic solvents for the extraction of curcuminoids and ar-turmerone, and these solvents are also compatible with food and pharmaceutical formulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.