Abstract

DONET (Dense Oceanfloor Network system for Earthquakes and Tsunamis) has been developed and installed around Nankai Trough, which is motivated by the 2004 Sumatra-Andaman Earthquake. DONET contains pressure gauges as well as seismometers, which are expected to detect crustal deformations driven by peeling off subduction plate coupling process. From our simulation results, leveling changes are different sense among the DONET points even in the same science node. On the other hand, oceanic fluctuations such as melting ice masses through the global warming have so large scale as to cause ocean bottom pressure change coherently for all of DONET points especially in the same node. This difference suggests the possibility of extracting crustal deformations component from ocean bottom pressure data by differential of stacking data. However, this operation cannot be applied to local-scale fluctuations related to ocean mesoscale eddies and current fluctuations, which affect ocean bottom pressure through water density changes in the water column (from the sea surface to the bottom). Therefore, we need integral analysis by combining seismology, ocean physics and tsunami engineering so as to decompose into crustal deformation, oceanic fluctuations and instrumental drift, which will bring about high precision data enough to find geophysical phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.