Abstract
Waste printed circuit boards (WPCBs) are a complicated and valuable fraction of electric and electronic waste. The recycling of them is critical to avoid environmental pollutions and to reuse resources. In particular, the e-waste import bans have been implemented in many traditional waste-importing countries in recent years, which is making the sustainable recycling essential and crucial for the advanced economies. In this study, a sustainable approach using alkaline glycine solution for the extraction of copper (Cu) from WPCBs, and the leaching behaviour of other metals (Ni, Al, Fe, Pb, Sn, Co, Zn, Au, Ag and Pd) is presented. Various leaching parameters, including initial pH, glycine concentration, solid content, oxidant, particle size, temperature and time were investigated. A maximum Cu extraction of 96.5 % was achieved, with high co-extraction of base metals (BMs). The extraction of BMs was dependent on the pH of leaching solution, which was highly correlated with other variables. BMs extraction was largely influenced by glycine concentration and solid content, while the sensitivity to H2O2, temperature, and particle size was insignificant. SEM-EDS analysis of leaching residue indicated that the unleached Cu may be locked in inert layers, e.g. Sn/solder materials. The kinetic analysis showed that the extraction of Cu from WPCBs (100 % <2 mm) at room temperature with ambient O2 in air as an oxidant was mainly controlled by internal diffusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.