Abstract

This study aims to extract and characterize cellulose nanocrystals (CNCs) from soybean hulls, and investigate their application as reinforcement in fishtail palm leaf stalk fiber (FPLSF) composites. CNCs were extracted through a multistep process involving alkalization, bleaching, acid hydrolysis and mechanical fibrillation. Analysis confirmed the transformation of cellulose I to cellulose II, yielding nanocrystals with 70.58% crystallinity index and thermal degradation peak at 371 °C. FTIR analysis verified removal of lignin and hemicellulose after extraction. The extracted CNCs were incorporated into FPLSF-epoxy composites at 2.5-10 wt% loading. Results showed 7.5 wt% CNCs (FT/SH4) provided optimal mechanical properties, with 51.4 MPa tensile strength, 46.09 MPa flexural strength and 36.47 kJ mm−2 impact strength. Lower CNC percentages showed significantly inferior properties due to poor fiber-matrix interfacial bonding. Overall, extracted soybean hull CNCs demonstrated good reinforcement capabilities for natural fiber composites. This provides a sustainable application route for agricultural residues and contributes to the development of high-performance biocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.