Abstract

The aluminum dross (AD), which causes numerous problems of its management and disposal to environment is a useful resource to extract alumina. This study explains a novel process to extract highly pure alumina (Al2O3) from AD at a high extraction rate without producing the residues and exhaust gases. An experimental set up was designed to perform the grinding of AD for the decomposition of aluminum nitride (AlN) and the removal of salts. Thereby, the desalted dross was used to detect the optimum alkaline (NaOH) calcination parameters and leaching conditions, as well as the dissolution kinetics of alumina and silica. The leaching residues were used to produce Ettringite mineral with calcium-based compounds (including CaO and CaSO4) to avoid the problems of solid waste disposal from the leaching process. Moreover, to purify the alumina, slightly soluble CaSO4 was added in leaching solution to precipitate silicate and the optimum additive/solution ratio (g/mL) was determined. The aluminum hydroxide (Al(OH)3), precipitated after the carbonization was calcinated at 900.0°C for 2h to produce γ-alumina. The morphological and mineralogical characterizations of AD, γ-Al2O3 and the synthesized Ettringite mineral were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and X-ray fluorescence (XRF). It was observed that activation temperature of 1000.0°C, Na2O/Al2O3 molar ratio of 1.4, leaching temperature of 60.0°C, leaching time of 40.0min, and the leaching liquid/solid ratio (mL/g) of 25/1 were the optimal parameter conditions to extract alumina with the extraction rate at 86.7% and purity of more than 98%. The results of leaching kinetics' study showed that the dissolution of alumina and silica were both controlled by layer diffusion process with the apparent activation energy of 11.4010kJ·mol-1 and 2.0556kJ·mol-1, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.