Abstract

Alternative fuels, specifically biodiesel, biodiesel blends, and E85 fuel, have been gaining a market share over the past few years. With the emergence of these fuels, fire debris analysts should be able to recognize their characteristics since these fuels may be encountered in casework. In this study, pure biodiesel (B100) and a 20% blend of pure biodiesel with petroleum diesel (B20) are examined as liquids and are extracted from debris samples using both passive headspace concentration and solvent extraction. Typical fire debris instrumental conditions are used to analyze these samples. Components of B100 and B20 may be observed in debris samples extracted using the passive headspace concentration method, but the chromatographic patterns are different from the pure liquid samples. When solvent extraction is used as a secondary extraction method on debris samples, the resulting patterns are consistent with the pure liquids of B100 and B20. E85 fuel, a blend of 85% ethanol and 15% gasoline, can be extracted using a typical fire debris extraction technique but requires slight modifications to typical fire debris instrumental conditions. E85 is shown at various stages of evaporation to demonstrate the resiliency of the ethanol. Additionally, samples of E85 were placed on carpet, burned and extinguished to demonstrate the effects of the suppression medium on the retention of ethanol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call