Abstract

An approach based on fractal is presented for extracting affine invariant features. Central projection transformation is employed to reduce the dimensionality of the original input pattern, and general contour (GC) of the pattern is derived. Affine invariant features cannot be extracted from GC directly due to shearing. To address this problem, a group of curves (which are called shift curves) are constructed from the obtained GC. Fractal dimensions of these curves can readily be computed and constitute a new feature vector for the original pattern. The derived feature vector is used in question for pattern recognition. Several experiments have been conducted to evaluate the performance of the proposed method. Experimental results show that the proposed method can be used for object classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.