Abstract
Image Denoising, Deblurring, and Enhancement techniques are most commonly used on the images to reduce or completely remove the noise. The noisy images are not capable of perfectly using the solution of the desired problems such as object edge detection, object segmentation, and object classification. Because the edges of these objects have much bluer or more noise pixels for clearly stable detection. The main motivation of this study is to solve the problem of detection and elimination of the undesired noisy pixels on the encountered images. These noisy pixels are needed to be removed from the obtained images which are the results of throughout determined image processing steps. The main reason for this study motivation come out that to find the actual inscription fault has some noisy (undesired) pixels when extracting the true difference between the two images has been subtracted from each other. The subtracted image results are used in the inscription inspection process that controls the accuracy of the inscription quality. In the inscription inspection process, subtracted image results are used to determine the accuracy of the inscription quality. These subtracted images are formed by subtraction from each other of reference images and sample images. In these subtracted images if truly exist inscriptions faults or sometimes that could be occurred undesired noisy pixels at the same time in the subtraction process. This study focused on detecting and eliminating the undesired noisy pixels in order to reach actual inscription faults in the images. Thus, the remove pixels as width algorithm (RPW) has been developed and applied to these specified images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Engineering, Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.