Abstract

The analysis of integral membrane proteins or transmembrane peptides by electrospray ionization mass spectrometry (ESI-MS) is difficult since detergents, used to solubilize these hydrophobic proteins and peptides, severely suppress analyte ion formation. This problem has been addressed previously by precipitating the protein, removing the detergent, and resolubilizing the protein in a nonpolar solvent. Here, we demonstrate a method that avoids protein precipitation and resolubilization. Detergent-solubilized bacteriorhodopsin is extracted into a nonpolar solvent phase by adding a chloroform/methanol/water solvent mixture to the aqueous detergent solution. ESI mass spectra of the nonpolar, chloroform-rich phase were dominated by peaks due to bacterioopsin. Bacterioopsin precursors with partially cleaved leader sequences were seen in all mass spectra. Additional peaks were likely due to intact bacteriorhodopsin, i.e., bacterioopsin with the retinal prosthetic group attached, and to bacterioopsin associated with lipid molecules. A separation process that occurred in the fused-silica capillary leading to the electrospray tip was essential for obtaining ESI mass spectra of bacterioopsin. The extraction-into-chloroform procedure also worked well with hydrophobic, transmembrane-type peptides that were insoluble in other electrospray solvents, including 100% formic acid, and the method has application to transmembrane peptides formed from digests of integral membrane proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.