Abstract
The aim of this research was optimization of supercritical fluid extraction (SFE) of sage herbal dust obtained as by-product from filter tea factory. Extraction kinetics modelling and artificial neural network (ANN) simulation were used for that purpose. Experiments were performed within expanded Box-Behnken experimental design on three levels and three variables. Influence of pressure (100–300bar), temperature (40–60°C) and CO2 flow rate (0.2–0.4kg/h) on total extraction yield was determined. In order to determine initial slope, extraction curves were fitted with five modified empirical models. Since Sovová model provided the best accordance with experimental data, initial slope obtained by this model was used as response variable for optimization with ANN and multivariable models (linear, exponential, logarithmic I and logarithmic II). Optimized SFE parameters for maximized initial slope were pressure of 283bar, temperature of 60°C and CO2 flow rate of 0.4kg/h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.