Abstract

Bilberry and lingonberry, two shrubs of the Ericaceae family, are consumed as food, beverage and dietary supplements due to their nutritional value and richness in antioxidant polyphenols. In plants, the quality and quantity of phenolic compounds are influenced by the parts of the plant to be used. In particular, plant phenolic compounds provide antioxidant activity in the protection of dietary lipids from oxidation and the gastric compartment has been proposed as a major site for diet-related oxidative stress. The aim of this thesis is to simultaneously assess the seasonal variations of phenolic compounds in leaves, stems, and fruits of bilberry and lingonberry extracts, as well as their antioxidant activity. For this study, aqueous and hydroethanolic (only fruits) extracts of bilberry and lingonberry samples collected in May, July and September during the years 2013-2014 were obtained under microwave-assisted extraction.In bilberry extracts, qualitative and quantitative analyses by UPLC/MS showed the presence of caffeoyl derivatives, p-coumaroyl derivatives, and flavonol glycosides in leaves whereas in stems, flavanol oligomers were additionally identified in significant amounts. Thioacidolysis revealed low degrees of polymerization (2-4) and (-)-epicatechin as the main flavan-3-ol unit. The sum of the phenolic compounds by UPLC was highly correlated with the Total Polyphenol Content and the antioxidant activity in the DPPH test for all the extracts except those of May leaves. The latter were relatively richer in p-coumaric acid derivatives. Seasonal effects were more marked for leaves which exhibited higher antioxidant activities and phenolic contents in July and September when these parameters were maximum in July for bilberry stems. The harvest period can be refined based on the desired phenolic structures. For lingonberry, the predominant presence of monomers and oligomers of flavanols and quercetin glycosides was found in all the morphological parts. Proanthocyanidins contain (+)-catechin and (-)-epicatechin as both extension and terminal units. The sum of the phenolic compounds by UPLC was less correlated with the Total Polyphenol Content and the antioxidant activity in the DPPH test than in bilberry. Furthermore, the total phenolic content (Folin method, UPLC) showed a slight but significant increase from May to September for both leaves and stems. This increase was confirmed for the antioxidant activity by the DPPH test for both leaves and stems in 2014.The antioxidant activity of bilberry and lingonberry extracts against lipid oxidation (formation of lipid-derived conjugated dienes) was evaluated under in vitro simulated digestion conditions. Firstly, the inhibition of lipid oxidation was performed using sunflower oil-in-water emulsions stabilized by bovine serum albumin (BSA) or egg yolk phospholipids (PL), both emulsifiers mimicking dietary components. Oxidation was initiated by metmyoglobin, a form of dietary iron from red meat. In both emulsion models, aqueous extracts from stems and leaves and the hydroethanolic fruit extract of bilberry proved to be more efficient inhibitors of lipid oxidation in the early phase of digestion (pH 5) than during the second phase (pH 3). Secondly, a bilberry leaf extract was tested in the inhibition of lipid oxidation in a complete static in vitro digestion model (oral, gastric and intestinal phases). The fast lipid oxidation in the gastric step (BSA and PL systems) and the slower lipid oxidation in the intestinal step (PL system) were totally inhibited by the bilberry leaf extract.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call