Abstract

A plasticized cellulose triacetate (CTA) membrane consisting of N-6-(t-dodecylamido)-2-pyridine carboxylic acid (t-DAPA) as a new carrier to facilitate membrane transport of copper(II) has been prepared to develop the selective recovery system for copper(II) from other divalent metal ions. First of all, the solid (CTA)−liquid extraction equilibrium of copper(II) was examined to obtain information concerning Cu(II)-t-DAPA complex stoichiometry and its extraction constant in the CTA membrane. Membrane transport studies were performed in a two-compartment cell. The CTA−t-DAPA membrane exhibited uphill transport of copper(II) against the concentration gradient. The influences of the aqueous and membrane components on the permeability of copper(II) were studied to elucidate its transport mechanism. Their results suggest that the transport mechanism consists of a diffusion process through an aqueous diffusion film, a fast interfacial chemical reaction, and diffusion through the membrane itself. The mass-transfe...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call