Abstract

This study explores the possibility of using Water lettuce (Pistia stratiotes) as a cost-effective substrate for the commercial extraction of cellulose biopolymer using a wide variety of physicochemical treatment methods to compare their efficiency in cellulose extraction. The extraction of cellulose from water lettuce, although promising due to their high cellulose content, was less explored as per the available literature. In this study, functional properties like bulk density-packed density, hydrated density, water retention capacity, oil retention capacity, emulsifying activity and setting volume of the extracted cellulose were studied. The cellulose content from water lettuce was found to be 38.94 ± 0.10% by anthrone method. Preliminary confirmation of cellulose biopolymer was done using the study of functional groups using Fourier Transform Infrared (FT-IR) analysis. Further characterization studies like Scanning Electron Microscopy (SEM), X- Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and thermogravimetric analysis (TGA) were conducted to understand the molecular architecture and purity of the cellulose extracted. Fabrication of cellulose sheets was carried out using starch as the plasticizer. Biodegradation studies were conducted in garden soil for four weeks and a high degradation rate of 78.22 ± 0.71% was observed in the fourth week of soil burial.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call