Abstract

In recent decades, drug delivery applications have extensively utilized hydrogel systems based on natural polymers. Among the numerous biopolymer-based hydrogel drug delivery systems reported, a novel pectin-like substance was extracted from fig leaves and copolymerized with chitosan. The hydrogel was reformed into microspheres using glutaraldehyde (chemical cross-linker) and sodium hexametaphosphate (physical cross-linker). The extracted polysaccharide and the prepared hydrogels were characterized by FTIR, GC/MS, SEC/MALS/DRI as well as XRD, SEM, BET, and thermal analysis. SEM images revealed the formation of porous microspheres with an average size of 50 μm in diameter. Degrees of swelling in pH7 at 35°C have shown the hydrogels reached two to three times their weights. This has been reflected in their ability to load drugs or any other chemicals. The loading formula shows that hydrogels have maximum loading efficiency more than one-third of the weight of hydrogel. The antimicrobial ciprofloxacin was used as a model for loading on prepared hydrogels. The loaded hydrogels were tested for their biological activities against staphylococcus aureus (S. aureus) bacteria. The antimicrobial growth inhibition zone of the cultured (S. aureus) by ciprofloxacin-loaded hydrogel was followed, which shows controlled growth in inhibition zone sizes and for long time intervals. Results showed that the pectin-chitosan hydrogels exhibited significant antibacterial activity against gram - positive bacteria (S. aureus), with an inhibition zone of 45 mm for (CH-co-FLP)/GLU hydrogel. In vitro, the ciprofloxacin-loaded hydrogels were studied and the cumulative release of ciprofloxacin under suitable conditions was found in a controlled manner and kept release for a long time interval. Data exhibited that the cumulative release profile of ciprofloxacin from the hydrogel demonstrated sustained release over 48 hours, with a value of 6.9% released within the first 24 hours and 7.0 and 6.9% % released at the end of the study for the (CH-co-FLP)/GLU and (CH-co-FLP)/SMP hydrogels, respectively. The novel pectin-chitosan hydrogels hold the potential to enhance the quality of life for numerous patients by minimizing the need for frequent intake of chronic medications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.