Abstract

Data extraction and visualization of 3D medical images of ocular blood vessels are performed by geometric transformation algorithm, which first performs random resonance response in a global sense to achieve detection of high-contrast coarse blood vessels and then redefines the input signal as a local image shielding the global detection result to achieve enhanced detection of low-contrast microfine vessels and complete multilevel random resonance segmentation detection. Finally, a random resonance detection method for fundus vessels based on scale decomposition is proposed, in which the images are scale decomposed, the high-frequency signals containing detailed information are randomly resonantly enhanced to achieve microfine vessel segmentation detection, and the final vessel segmentation detection results are obtained after fusing the low-frequency image signals. The optimal stochastic resonance response of the nonlinear model of neurons in the global sense is obtained to detect the high-grade intensity signal; then, the input signal is defined as a local image with high-contrast blood vessels removed, and the parameters are optimized before the detection of the low-grade intensity signal. Finally, the multilevel random resonance response is fused to obtain the segmentation results of the fundus retinal vessels. The sensitivity of the multilevel segmentation method proposed in this paper is significantly improved compared with the global random resonance results, indicating that the method proposed in this paper has obvious advantages in the segmentation of vessels with low-intensity levels. The image library was tested, and the experimental results showed that the new method has a better segmentation effect on low-contrast microscopic blood vessels. The new method not only makes full use of the noise for weak signal detection and segmentation but also provides a new idea of how to achieve multilevel segmentation and recognition of medical images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.