Abstract

A bench-scale pressurized low polarity water (PLPW) extractor was used for the extraction and separation of hemicellulose, cellulose, lignin, and other phenolic compounds in flax shives. In the first part of this research, the key PLPW extraction process variables of temperature, pH, and flow rate, were optimized using central composite design (CCD). Temperature and pH of water had a significant affect on the fractionation of carbohydrates (cellulose and hemicellulose), lignin, and other phenolics. The optimal extraction conditions for the separation of hemicellulose and lignin, determined by the optimization using CCD, were 170 degrees C, pH 3.0, and a flow rate of 2.5 mL/min. Under these extraction conditions, 39.3% of the initial biomass or feed, 70.1% of the hemicellulose, 35.3% of the lignin, and 5.3% of the cellulose were extracted from the flax shives. In order to improve the purity and yield of the cellulose, a two-stage PLPW extraction was examined. The first stage was designed to remove hemicellulose by water at 170 degrees C and the second stage was intended for delignification by a pH 12 buffer at 220 degrees C. The two-stage PLPW extraction effectively removed 63.2% of the feed, 97.3% of hemicellulose, and 86.3% of lignin, while solubilizing 23.9% of cellulose; resulting in a solid residue containing 0.7 g of hemicellulose, 3.5 g of lignin, and 27.3 g of cellulose/100 g of DFS. The PLPW extraction is able to extract and separate components in flax shives by changing pH and temperature. The best case occurs between pH 9.5 and 12, resulting in maximum solubilization of hemicellulose and lignin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call