Abstract
Reactivation of protein aggregates plays a fundamental role in numerous situations, including essential cellular processes, hematological and neurological disorders, and biotechnological applications. The molecular details of the chaperone systems involved are known to a great extent but how the overall reactivation process is achieved has remained unclear. Here, we quantified reactivation over time through a predictive mechanistic model and identified the key parameters that control the overall dynamics. We performed new targeted experiments and analyzed classical data, covering multiple types of non-ordered aggregates, chaperone combinations, and experimental conditions. We found that, irrespective of the behavior observed, the balance of surface disaggregation and refolding in solution universally determines the reactivation dynamics, which is broadly described by two characteristic times. This characterization makes it possible to use activity measurements to accurately infer the underlying loss of aggregated protein and to quantify, for the first time, the refolding rates of the soluble intermediates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.