Abstract

The paper presents an experimental study on the coupled transport of lignosulfonate (LS) through bulk liquid membrane (BLM) and thereby to identify the best set of solvent, operating conditions and mode of transport that would yield optimum performance of the BLM. Trioctylamine (TOA) is used as carrier. Among various solvents, tested for the above purpose, dichloroethane is found to be the best. The effects of operating condition, viz. pH, temperature, and carrier concentration, on the equilibrium distribution of LS are investigated. The effects of temperature, stirring of aqueous and organic phases, stirring speed, carrier concentration, initial feed and strip phase concentration on the separation of LS using BLM are also studied. It is observed that transport of LS can be enhanced by increasing the temperature and stirring speed of feed phase. Stirring of strip phase has no appreciable effects on the transport of LS. With increase in initial feed concentration the initial rate of the transport of LS is higher but continues for a longer time. Recovery of LS is much higher in co-transport mode in comparison to counter transport mode. Application of 1.25 M NaOH as stripping solution gives high recovery (70%) and high strip flux (70% of feed flux).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.