Abstract

Regarding the generation and integration of typical scenes of PV and loads in urban photovoltaic distribution networks, as well as the insufficient consideration of the spatiotemporal correlation between PV and loads, this paper proposes a typical scene extraction method based on local linear embedding, kernel density estimation, and a joint PV–load typical scene extraction method based on the FP-growth algorithm. Firstly, the daily operation matrices of PV and load are constructed by using the historical operation data of PV and load. Then, the typical scenes are extracted by the dimensionality reduction of local linear embedding and the kernel density estimation method. Finally, the strong association rules of PV–meteorological conditions and load–meteorological conditions are mined based on the FP-growth algorithm, respectively. The association of PV–load typical daily operation scenarios is completed using meteorological conditions as a link. This experiment involved one year of operation data of a distribution network containing PV in Qingyuan, Guangdong Province. The typical scene extraction joint method, Latin hypercube sampling method, and k-means clustering-based scene generation method proposed in this paper are used for comparison, respectively. The results show that compared to the other two scenario generation methods, the error between the typical scenario obtained by this method and the actual operating scenario of the distribution network is smaller. The extracted typical PV and load scenarios can better fit the actual PV and load operation scenarios, which have more reference value for the operation planning of actual distribution networks containing PV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.